www.ecologistic.ru


Экология, экологическая безопасность и борьба за первозданность природы.

Биобезопасность

В проекте задействованы несколько тысяч ученых из более чем 20 стран. С 1989 года в нем участвует и Россия, где по проекту работает около 100 групп.
Основная цель первого этапа проекта – выяснить последовательность нуклеотидов во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Ожидается, что на следующем этапе исследователи определят все функции генов и разработают возможности использования полученных данных, которые будут использованы в генно-терапевтических работах для лечения и предупреждения наследственных болезней.
Генную терапию на современном этапе можно определить как лечение наследственных, мультифакториальных и ненаследственных (инфекционных) заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы. Первым моногенным наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммуннодефицит, обусловленный мутацией в гене аденозиндезаминазы (ADA). 14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей этим достаточно редким заболеванием (1 : 100 000), были пересажены ее собственные лимфоциты, предварительно трансформированные вне организма (ex vivo) геном ADA (ген ADA + ген neo + ретровирусный вектор).
Лечебный эффект наблюдался в течение нескольких месяцев, после чего процедура была повторена с интервалом 3-5 месяцев (Culver R.W., 1994). За три года терапии в общей сложности проведены 23 внутривенные трансфузии ADA-трансформированных Т-лимфоцитов без видимых неблагоприятных эффектов. В результате лечения состояние пациентки настолько улучшилось, что она смогла вести нормальный образ жизни и не бояться случайных инфекций. Столь же успешным оказалось и лечение второй пациентки с этим заболеванием. В настоящее время клинические испытания генной терапии этого заболевания проводятся в Италии, Франции, Великобритании и Японии.
В 1997 году число допущенных к клиническим испытаниям протоколов уже составляло 175, более 2000 пациентов приняли участие в их реализации. в 1999 году - около 400 клинических исследований, в которых приняли участие немногим более 3 тыс. человек. Большинство таких проектов (около 80%) касаются лечения онкологических заболеваний, а также ВИЧ-инфекции (СПИДа). ( БАРАНОВ В.С. , 1999).
Большая часть генно-терапевтических работ находится пока на I или совмещенном I/II этапе клинических испытаний. (Зеленин А.В.,2000).



Решающим условием успешной генотерапии является обеспечение эффективной доставки, то есть трансфекции (в широком смысле) или трансдукции (при использовании вирусных векторов) чужеродного гена в клетки-мишени, обеспечение длительного функционирования его в этих клетках и создание условий для полноценной работы гена (его экспрессии). Трансфекция может проводиться с использованием чистой (\"голой\" - naked) ДНК, легированной (встроенной) в соответствующую плазмиду, или комплексированной ДНК (плазмидная ДНК, соединенная с солями, белками (трансферрин), органическими полимерами (DEAE-декстран, полилизин, липосомами или частицами золота), или ДНК в составе вирусных частиц, предварительно лишенных способности к репликации.
При генной терапии чаще всего используют метод внесения терапевтического гена. Разрабатывают также методы коррекции дефектных генов (при мутациях, изменяющих небольшой участок ДНК), замены дефектного гена нормальным, методы усиления экспрессии нормального гена, восстановления экспрессии блокированного гена или методы блокады экспрессии болезнетворного гена.
Для введения терапевтического гена в клетки пациента используют специальные вектора. При этом одной из самых сложных проблем является разработка подходов, обеспечивающих специфическую, эффективную и безопасную доставку генетического материала в соответствующие клетки-мишени пациента. Проблема доставки гена значительно усложняется в тех случаях, когда необходимо перенести большой ген (вектора имеют ограниченную емкость), особенно в клеточное ядро. Правильное внесение гена обеспечивает его функционирование в течение всей жизни человека и полное излечение пациента от соответствующего заболевания.
В качестве векторов могут быть использованы ослабленные и модифицированные вирусы (ретровирусы, аденовирусы, адено-ассоциированные вирусы, вирус герпеса и др.) или синтезированные векторы, способных переносить гены реципиенту. Для клинического применения векторы должны обладать определенными качествами. Однако универсального вектора не существует. Любой вектор имеет свои преимущества и недостатки. Одни векторы легко проникают в делящиеся клетки, но не способны инфицировать клетки, находящиеся в состоянии покоя (ретровирусы); другие — могут вызывать иммунный ответ на вирусные белки, тем самым приводя к быстрой элиминации (гибели) внесенного генетического материала из организма (аденовирусы); третьи — способны проникать в неделящиеся клетки, но могут представлять потенциальную опасность для человека (лентивирусы, например, ВИЧ); четвертые — непатогенны, могут инфицировать неделящиеся клетки и обеспечивать достаточно длительную экспрессию внесенных генов, но они не могут переносить большие участки ДНК и их трудно получить в большом количестве (адено-ассоциированные вирусы); пятые — неиммуногенны, могут доставлять большое количество генетического материала в организм человека, но значительно меньшее — внутрь клеточного ядра, к тому же относительно быстро разрушаются в организме или перенесенный ген экспрессируется кратковременно (липосомы).
Выбор вектора и метода его доставки определяется конкретной целью генной терапии, поскольку от характера заболевания зависит, в клетки каких тканей необходимо ввести гены, как долго и в каком количестве они должны экспрессироваться и др. Использование векторов в клинических испытаниях демонстрируют таблицы:

(Зеленин А.В.,2000)
В качестве клеток-мишеней использовали лимфоциты, клетки костного мозга, солидных опухолей, печени, легких, сердца, скелетных мышц и др. В последующих клинических исследованиях стали применять различные подходы in vivo, используя для переноса генетического материала в организм реципиента все возможные пути введения (всего в клинических исследованиях использовано 18 разных путей введения).
Прямая инъекция генетического материала – самый простой метод доставки трансгена в клетки in vivo, при котором ДНК вводится непосредственно в ткань путем инъекции. Область использования данного метода ограничена такими тканями, как кожа, тимус и поперечно-полосатые мышцы, некоторыми так называемыми солидными опухолями. Достаточно продолжительная (до года) экспрессия трансгена наблюдается преимущественно в мышечной ткани. Эффективность такой трансфекции обычно низкая (менее 1%), но вполне достаточная, например, для генетической иммунизации.
Баллистическая трансфекция основана на обстреле органов и тканей микрочастицами тяяжелых металлов (золото, вольфрам), покрытых плазмидной ДНК. Микрочастицы проходят через клеточные слои и переносят генетическую конструкцию непосредственно в ядра клеток. Глубина проникновения, как правило, невелика – до 1мм, поэтому метод используется преимущественно для трансфекции клеток кожи и подлежащего хряща. Однако при особых условиях обстрела микрочастицы могут проникать в ткань на глубину до 4-5 мм и переносить ген в волокна поперечно-полосатых мышц.
Введение генетического материала внутрь кровеносных сосудов, питающих трансфицируемый орган применяется в первую очередь для лечения болезней печени, почек и мочевыводящих путей. Аэрозольное введение генетического материала в дыхательные пути используется при лечении заболеваний легких. (А.В.Зеленин, 2000).
Таким образом, стандартная схема генокоррекции наследственного дефекта включает серию последовательных этапов. Она начинается созданием полноценно работающей (экспрессирующейся) генетической конструкции, содержащей смысловую (кодирующую белок) и регуляторную части гена. На следующем этапе решается проблема вектора, обеспечивающего эффективную, а по возможности и адресную доставку гена в клетки-мишени. Затем проводится трансфекция (перенос полученной конструкции) в клетки-мишени, оценивается эффективность трансфекции, степень коррегируемости первичного биохимического дефекта в условиях клеточных культур (in vitro) и, что особенно важно, in vivo на животных - биологических моделях. Только после этого можно приступать к программе клинических испытаний. С точки зрения генной терапии, самыми простыми болезнями являются моногенные болезни, те, которые требуют работы с одним геном, например, гемофилия, мышечная дистрофия Дюшенна, серповидно-клеточная анемия.

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях