www.ecologistic.ru


Экология, экологическая безопасность и борьба за первозданность природы.

Экологическая безопасность. Защита территории и населения при чрезвычайных ситуациях

Ядерные боеприпасы основаны на принципе деления ядерного горючего (в основном, тяжелых элементов таблицы Менделеева, относительная масса которых больше, чем у урана). Термоядерные боеприпасы имеют мощность на порядок выше, в них ЯБП часто играют роль взрывателя, а принцип действия основан на синтезе легких элементов (дейтерий, тритий, литий).
Мощность ЯБП q определяется количеством высвобождающейся при его взрыве энергии (тротиловым эквивалентом), то есть количеством взрывчатого вещества (тротила), при взрыве которого выделяется столько же энергии, что и при взрыве рассматриваемого ЯБП. Тротиловый эквивалент (ТЭ) измеряется в тоннах, килотоннах или мегатоннах. Чтобы представить мощность ядерного взрыва, достаточно знать, что при взрыве 1 кг тротила образуется 1000 ккал, а 1 кг урана - 18 млрд ккал. За всю Вторую мировую войну союзники сбросили на города Германии авиабомб ТЭ в 2,9 Мт. А сейчас созданы боеприпасы мощностью до 100 Мт [6, 18, 26, 46, 60, 62].
По мощности ЯБП делят на:
-

сверхмалые - менее 1 кт;
-

малые - от 1 до 15 кт;
-

средние - от 15 до 100 кт;
-

крупные - от 100 кт до 1 Мт;
-

сверхкрупные - при ТЭ свыше 1 Мт;
-

нейтронные боеприпасы мощностью 0,5...2 кт.
В зависимости от высоты (рис.6.1) ядерные взрывы делят на:
-

высотные, если подрыв ЯБП произведен на высоте более 15 км;
-

воздушные, если светящаяся область не касается поверхности земли. Воздушные взрывы в свою очередь делятся на высокие воздушные, если поднимающийся столб пыли не достигает светящейся области, и низкие воздушные, если такое касание произошло;
-

наземные (надводные), если светящаяся область касается поверхности земли (воды);
-

подземные (подводные), произведенные на глубине до 1 км.
Распределение энергии между поражающими факторами ядерного взрыва зависит от вида взрыва и условий, в которых он происходит (климат, рельеф местности, условия расположения ОЭ и его элементов, устойчивость ОЭ к воздействиям поражающих факторов). Распределение энергии для воздушного ядерного взрыва представлено в табл.6.1.


Рис. 6.1. Виды взрывов ядерных боеприпасов

Иногда необходимо учитывать такие поражающие факторы, как огненный шар, сейсмические волны (при подземном взрыве ядерного фугаса), рентгеновское излучение и газовый поток (при высотном ядерном взрыве для поражения средств воздушно-космического нападения последние два фактора эффективны при высоте взрыва более 60 км).
Ударная воздушная волна (УВВ) - наиболее мощный поражающий фактор ядерного взрыва. УВВ образуется за счет колоссальной энергии, выделяемой в зоне реакции, что приводит здесь к наличию огромного давления (до 105 млрд Па) и температуры (см. гл. 3).
Световое излучение - это электромагнитные излучения в ультрафиолетовой, видимой и инфракрасной частях спектра. Его источником является светящаяся область (огненный шар), состоящая из смеси раскаленных продуктов взрыва с воздухом.
В зоне взрыва выделяется огромное количество энергии в незначительном объеме за очень короткий промежуток времени при огромном давлении, что приводит там к резкому возрастанию температуры. При возникшей огромной температуре материал оболочки ЯБП и другие вещества, оказавшиеся в зоне взрыва, испаряются. Таким образом, в зоне взрыва образуется некий объем раскаленного воздуха и испарившихся веществ, который получил название «огненный шар». Размеры его зависят от мощности ЯБП, а диаметр при наземном или воздушном взрыве определяется соответствующей формулой в зависимости от мощности ЯБП:
Dназ = 67*q0.4
Dвозд = 67*q0.4

Таблица 6.1
Поражающие факторы ядерного взрыва

Наименование поражающего фактора

Расходуемая энергия, %


в ядерном БП

в нейтронном БП
Ударная воздушная волна

50

40...7
Световое излучение

35

25...8
Проникающая радиация

4

30...80
РЗ местности

10

До 5
Электромагнитный импульс

1

-

Примечание. Конкретное распределение энергии взрыва между поражающими факторами нейтронного боеприпаса зависит от его компонентов и особенностей устройства.

Продолжительность свечения огненного шара определяется формулой:

где Тсв дается в секундах, a q - в килотоннах тротилового эквивалента.
Эти величины имеют значения:
ТЭ, кт

20

100

1 000

5 000

10 000
Тсв, с

3

5

10

17

22

В атмосфере лучистая энергия ослабляется из-за поглощения или рассеяния света частицами дыма, пыли, каплями влаги, поэтому необходимо учитывать степень прозрачности атмосферы. Падающее на объект световое излучение частично поглощается или отражается. Часть излучения проходит через прозрачные объекты: стекло окон пропускает до 90% энергии светового излучения, которое способно вызвать пожар внутри помещения. Таким образом, в городах и на ОЭ возникают очаги горения. Так, при ядерной бомбардировке Хиросимы возник огневой шторм, который бушевал 6 часов. При этом центр города выгорел дотла (более 60 тыс. домов), а скорость ветра, направленного к центру взрыва, достигала 60 км/ч.
Проникающая радиация - это ионизирующее излучение, образующееся непосредственно при ядерном взрыве и продолжающееся несколько секунд. Основную опасность при этом представляет поток гамма-излучений и нейтронов, испускаемых из зоны взрыва в окружающую среду. Источником проникающей радиации является цепная ядерная реакция и РА распад продуктов ядерного взрыва.
Проникающая радиация невидима, неощутима, распространяется в материалах и воздухе на значительные расстояния, вызывая поражение живых организмов (лучевую болезнь). Поток нейтронов, возникающий при ядерном взрыве, содержит быстрые и медленные нейтроны, воздействие которых на организм различно и отличается от воздействия гамма-излучений. Это учтено при использовании специальной единицы измерения - бэр (биологический эквивалент рентгена), учитывающей биологическую вредность излучения.
Доля нейтронов в общей дозе облучения при проникающей радиации меньше дозы гамма-излучения, но с уменьшением мощности ЯБП она увеличивается. Нейтроны вызывают наведенную радиацию в металлических предметах и грунте в районе взрыва. Радиус зоны поражения проникающей радиацией значительно меньше радиусов поражения ударной волной и световым импульсом.
От воздействия проникающей радиации темнеет оптика, засвечиваются фотоматериалы, происходят обратимые или необратимые изменения в материалах и элементах аппаратуры [46].
Радиоактивное заражение местности - это заражение поверхности земли, атмосферы, водоемов и других объектов радиоактивными веществами, выпавшими из облака, образованного ядерным взрывом. Источниками РЗ являются: радионуклиды, образовавшиеся как продукт ядерной реакции; не прореагировавшая часть ядерного горючего; наведенная радиоактивность в районе ядерного взрыва. Ослабление радиации характеризуется коэффициентом ее ослабления веществом экрана (см. табл. 5.8).
РЗ отличается масштабом и продолжительностью воздействия, скрытностью поражения и спадом уровня радиации со временем. Общая активность продуктов деления определяется соотношениями: Аβ = q*108 Ки;Аγ = 0,4*q*108 Ки, где Аβ и Аγ соответственно бета- и гамма-активность.
Плотность выпадения РА частиц на местности уменьшается с увеличением расстояния от центра выброса. При этом ближе к центру выброса выпадают относительно крупные РА частицы (свыше 50 мкм). Время выпадения частиц соответствующего размера в воздушной среде указано в табл. 6.2.

Таблица 6.2
Время выпадения на поверхность Земли частиц разного диаметра с высоты 24 км

Диаметр частицы, мкм

Время выпадения, ч

Диаметр частицы, мкм

Время выпадения, ч
340

0.75

33

80
250

1,4

16

340
150

3,9

8

1400
75

16

5

3400 (>141 сут)

Плотность РЗ данного участка территории зависит от количества выпавших РА частиц на единицу площади, их активности, дисперсного состава и времени, прошедшего после взрыва (выброса), и выражается в Ки/км2 или Ки/м2.
Каждый изотоп распадается со своей скоростью, то есть за единицу времени распадается определенное число атомов изотопа. Удобно использовать понятие «период полураспада» (Т), то есть время, в течение которого распадается половина общего числа атомов. Период полураспада постоянен для данного изотопа (никакими техническими средствами ускорить или замедлить распад изотопа невозможно).

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях