www.ecologistic.ru


Экология, экологическая безопасность и борьба за первозданность природы.

Основы общей экологии


Иногда животных, например, многих насекомых, поеда-ющих растения, а также паразитов, хищников рассматривают в качестве ес-тественных врагов тех организмов, за счет которых они существуют. Такой подход в принципе неверен. Паразиты и хищники, зоофаги и фитофаги являются факторами среды по отношению к своим хозяе-вам, жертвам и т.п. Следовательно, с общеэкологических позиций все они необходимы друг другу. В естественных условиях ни один вид не стремится и не может привести к уничтожению другого. Более того, исчезновение какого-либо естественного \"врага\" из экологической системы может привести к вымиранию того вида, на котором разви-вается этот \"враг\".
Все эти обстоятельства человек должен учитывать при проведе-нии мероприятий по управлению экологическими системами и от-дельными популяциями с целью использования их в своих интересах, а также предвидеть косвенные последствия, которые могут при этом иметь место.
4. Функционирование экосистем
4.1. Энергия в экосистемах. Жизнь как термодинамический процесс
Напомним, что экосистема - это совокупность живых организ-мов, обменивающихся непрерывно энергией, веществом и информа-цией друг с другом и с окружающей средой. Рассмотрим сначала процесс обмена энергией.
Энергию определяют как способность производить работу. Свойства энергии описываются законами термодинамики.
Первый закон (начало) термодинамики или закон сохранения энергии утверждает, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново.
Второй закон (начало) термодинамики или закон энтропии утверждает, что в замкнутой системе энтропия может только возрас-тать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия пере-ходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для ис-пользования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упо-рядоченность системы, тем меньше ее энтропия.
Самопроизвольные процессы ведут систему к состоянию равновесия с окружающей средой, к росту энтропии, производству положительной энтропии. Если неживую неуравновешенную с окружающей средой систему изолировать, то всякое движение в ней скоро прекратится, система в целом угаснет и превратится в инертную группу материи, находящуюся в термодинамическом равновесии с окружающей средой, то есть в состоянии с максимальной энтропией. Это наиболее вероятное для системы состояние и самопроизвольно без внешних воздействий она выйти из него не сможет. Так, например, раскаленная сковородка остыв, рассеяв тепло, сама уже не нагреется; энергия при этом не потерялась, она нагрела воздух, но изменилось качество энергии, она уже не может совершать работу. Таким образом, в неживых системах устойчиво их равновесное со-стояние.
У живых систем есть одно принципиальное отличие от неживых - они совершают постоянную работу против уравновешивания с окружающей средой. Это утверждение имеет следующий термодинамиче-ский смысл: как в неживых системах устойчиво их равновесное состоянии, так в живых системах устойчиво неравновесное состояние.
Жизнь - это единственный на Земле естественный самопроизвольный процесс, в котором энтропия системы уменьшается. Почему это возможно?
Все живые системы являются открытыми для обмена энергией. В окружающей их среде есть огромное количество даровой энергии Солнца, а в составе самой живой системы есть компоненты, обладающие механизмами, позволяющими эту энергию улавливать (извлекать), концентрировать, а затем снова рассеивать в окружающую среду. Как рассмотрено выше, рассеивание энергии, то есть увеличе-ние энтропии, - это процесс, характерный для любой системы, как не-живой, так и живой, а самостоятельное улавление и концентрирование энергии - это способность только живой системы. При этом происхо-дит извлечение порядка, организации из окружающей среды, то есть выработка отрицательной энергии - негоэнтропии. Такой процесс образования порядка в системе из хаоса окружающей среды называется самоорганизацией. Он ведет к уменьшению энтропии живой системы, противодействует ее уравновешиванию с окружающей средой, то есть росту энтропии, что для живой системы при достижении максимальной энтропии - равновесия с окружающей средой - означает смерть.
Таким образом, любая живая система, в том числе и экосистема, поддерживает свою жизнедеятельность благодаря, во-первых, наличию в окружающей среде в избытке даровой энергии; вовторых, способности за счет устройства составляющих ее компонентов эту энергию улавливать и концентрировать, а использовав - рассеивать в окру-жающую среду.
Даровая энергия окружающей среды - это энергия Солнца.
Доходящая до Земли энергия Солнца распределяется следую-щим образом: 33 % ее отражается облаками и пылью атмосферы (это так называемое альбедо или коэффициент отражения Земли ); 67 % поглощается атмосферой, поверхностью Земли и океаном. Из этого количества поглощенной энергии лишь около одного процента расходуется на фотосинтез, а вся остальная энергия, нагрев атмосферу, сушу и океан, переизлучается в космическое пространство в форме невидимого теплового (инфра-красного) излучения. Этого одного процента энергии достаточно для обеспечения ей всего живого вещества плане-ты и поддержания им состояния с низкой энтропией. Как распределяется эта энергия между компонентами биотической структуры?
Улавливают энергию Солнца и превращают ее в потенциальную энергию органического вещества растения - продуценты. Весь остальной живой мир получает необходимую для жизнедеятельности энер-гию, в основном поедая их.
Перенос энергии пищи от ее источника - продуцента через ряд организмов, происходящий путем поедания одних организмов другими, называется пищевой или трофической цепью.
Как происходит перенос энергии по трофической цепи? Животное употребило в пищу растение или консумента более низкого порядка. Содержащееся в пище органическое вещество расщепляется в при-сутствии кислорода с выделением энергии. Этот процесс, обратный фотосинтезу, называется дыханием:

Он имеет место в каждой клетке живого организма, поэтому его еще называют клеточным дыханием.
Около 90 % выделившейся энергии расходуется организмом на поддержание своей жизнедеятельности, то есть на обеспечение всех необходимых ему функций, после чего она в виде выделяемого орга-низмом тепла рассеивается в окружающую среду и по сути дела без-возвратно теряется для всей живой системы. И только около 10 % энергии идет на построение тела, рост и размножение организма. Именно эти 10 % энергии и доступны следующему трофическому уровню. Таким образом, энергии с переходом от одного уровня к другому остается все меньше.
Но здесь нужно иметь в виду, что чем выше трофический уровень, тем в более концентрированной форме содержится в живых организмах энергия. Это объясняется присущей только живому веществу спецификой - обладанием механизмами концентрирования энергии.
Таким образом, сначала улавливание, а затем концентрирование энергии с переходом от одного трофического уровня к другому обеспечивает повышение упорядоченности, организации живой системы, то есть уменьшение ее энтропии. Для поддержания низкой энтропии в равной степени важно, чтобы у элементов системы были эффективные механизмы как для улавливания и концентрации энергии - извлечения негоэнтропии из окружающей среды, так и для рассеивания ее в окружающую среду - освобождение от накапливающейся положительной энтропии. В таком сочетании они есть только в живых системах. Поэтому жизнь как термодинамический процесс представляет собой непрерывный обмен живых систем с окружающей средой, при котором происходит освобождение от производимой положительной энтропии и извлечение отрицательной, то есть порядка и организации.
Необходимо понимать, что энтропия уменьшается в конкретной локальной зоне, при этом в окружающей среде она возрастает. Таким образом, рост упорядоченности в одной части системы приводит к усилению неупорядоченности в других ее частях.
Для описания поведения энергии в экосистемах употребляют термин поток энергии, поскольку в отличии от циклического движения веществ превращения энергии идут в одном направлении. Энергия, однажды использованная каким-либо организмом, превращается в тепло и утрачивается для экосистемы. Она не может быть снова \"пущена в дело\" как вода или неорганические вещества, по отношению к которым используется термин круговорот воды и веществ.

Авторы сайта не несут отвественности за данный материал и предоставляют его исключительно в ознакомительных целях